Wednesday, 23 July 2014

Water quality / REF / 464 / 2014


Water quality refers to the chemical, physical, biological, and radiological characteristics of water. It is a measure of the condition of water relative to the requirements of one or more biotic species and or to any human need or purpose. It is most frequently used by reference to a set of standards against which compliance can be assessed. The most common standards used to assess water quality relate to health of ecosystems, safety of human contact and drinking water.
Standards

In the setting of standards, agencies make political and technical/scientific decisions about how the water will be used. In the case of natural water bodies, they also make some reasonable estimate of pristine conditions. Different uses raise different concerns and therefore different standards are considered. Natural water bodies will vary in response to environmental conditions. Environmental scientists work to understand how these systems function, which in turn helps to identify the sources and fates of contaminants. Environmental lawyers and policymakers work to define legislation with the intention that water is maintained at an appropriate quality for its identified use.

The vast majority of surface water on the planet is neither potable nor toxic. This remains true when seawater in the oceans (which is too salty to drink) is not counted. Another general perception of water quality is that of a simple property that tells whether water is polluted or not. In fact, water quality is a complex subject, in part because water is a complex medium intrinsically tied to the ecology of the Earth. Industrial and commercial activities (e.g. manufacturing, mining, construction, transport) are a major cause of water pollution as are runoff from agricultural areas, urban runoff and discharge of treated and untreated sewage.
Categories

The parameters for water quality are determined by the intended use. Work in the area of water quality tends to be focused on water that is treated for human consumption, industrial use, or in the environment.
Human consumption

Contaminants that may be in untreated water include microorganisms such as viruses, protozoa and bacteria; inorganic contaminants such as salts and metals; organic chemical contaminants from industrial processes and petroleum use; pesticides and herbicides; and radioactive contaminants. Water quality depends on the local geology and ecosystem, as well as human uses such as sewage dispersion, industrial pollution, use of water bodies as a heat sink, and overuse (which may lower the level of the water).

The United States Environmental Protection Agency (EPA) limits the amounts of certain contaminants in tap water provided by US public water systems. The Safe Drinking Water Act authorizes EPA to issue two types of standards: primary standards regulate substances that potentially affect human health, and secondary standards prescribe aesthetic qualities, those that affect taste, odor, or appearance. The U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

In urbanized areas around the world, water purification technology is used in municipal water systems to remove contaminants from the source water (surface water or groundwater) before it is distributed to homes, businesses, schools and other users. Water drawn directly from a stream, lake, or aquifer and that has no treatment will be of uncertain quality.
Industrial and domestic use

Dissolved minerals may affect suitability of water for a range of industrial and domestic purposes. The most familiar of these is probably the presence of ions of calcium and magnesium which interfere with the cleaning action of soap, and can form hard sulfate and soft carbonate deposits in water heaters or boilers. Hard water may be softened to remove these ions. The softening process often substitutes sodium cations. Hard water may be preferable to soft water for human consumption, since health problems have been associated with excess sodium and with calcium and magnesium deficiencies. Softening decreases nutrition and may increase cleaning effectiveness.
Environmental water quality
Urban runoff discharging to coastal waters


Environmental water quality, also called ambient water quality, relates to water bodies such as lakes, rivers, and oceans. Water quality standards for surface waters vary significantly due to different environmental conditions, ecosystems, and intended human uses. Toxic substances and high populations of certain microorganisms can present a health hazard for non-drinking purposes such as irrigation, swimming, fishing, rafting, boating, and industrial uses. These conditions may also affect wildlife, which use the water for drinking or as a habitat. Modern water quality laws generally specify protection of fisheries and recreational use and require, as a minimum, retention of current quality standards.
Satirical cartoon by William Heath, showing a woman observing monsters in a drop of London water (at the time of the Commission on the London Water Supply report, 1828)

There is some desire among the public to return water bodies to pristine, or pre-industrial conditions. Most current environmental laws focus on the designation of particular uses of a water body. In some countries these designations allow for some water contamination as long as the particular type of contamination is not harmful to the designated uses. Given the landscape changes (e.g., land development, urbanization, clearcutting in forested areas) in the watersheds of many freshwater bodies, returning to pristine conditions would be a significant challenge. In these cases, environmental scientists focus on achieving goals for maintaining healthy ecosystems and may concentrate on the protection of populations of endangered species and protecting human health.
Sampling and measurement

The complexity of water quality as a subject is reflected in the many types of measurements of water quality indicators. The most accurate measurements of water quality are made on-site, because water exists in equilibrium with its surroundings. Measurements commonly made on-site and in direct contact with the water source in question include temperature, pH, dissolved oxygen, conductivity, oxygen reduction potential (ORP), turbidity, and Secchi disk depth.
Sample collection
An automated sampling station installed along the East Branch Milwaukee River, New Fane, Wisconsin. The cover of the 24-bottle autosampler (center) is partially raised, showing the sample bottles inside. The autosampler was programmed to collect samples at time intervals, or proportionate to flow over a specified period. The data logger (white cabinet) recorded temperature, specific conductance, and dissolved oxygen levels.

More complex measurements are often made in a laboratory requiring a water sample to be collected, preserved, transported, and analyzed at another location. The process of water sampling introduces two significant problems. The first problem is the extent to which the sample may be representative of the water source of interest. Many water sources vary with time and with location. The measurement of interest may vary seasonally or from day to night or in response to some activity of man or natural populations of aquatic plants and animals. The measurement of interest may vary with distances from the water boundary with overlying atmosphere and underlying or confining soil. The sampler must determine if a single time and location meets the needs of the investigation, or if the water use of interest can be satisfactorily assessed by averaged values with time and/or location, or if critical maxima and minima require individual measurements over a range of times, locations and/or events. The sample collection procedure must assure correct weighting of individual sampling times and locations where averaging is appropriate.Where critical maximum or minimum values exist, statistical methods must be applied to observed variation to determine an adequate number of samples to assess probability of exceeding those critical values.

The second problem occurs as the sample is removed from the water source and begins to establish chemical equilibrium with its new surroundings - the sample container. Sample containers must be made of materials with minimal reactivity with substances to be measured; and pre-cleaning of sample containers is important. The water sample may dissolve part of the sample container and any residue on that container, or chemicals dissolved in the water sample may sorb onto the sample container and remain there when the water is poured out for analysis. Similar physical and chemical interactions may take place with any pumps, piping, or intermediate devices used to transfer the water sample into the sample container. Water collected from depths below the surface will normally be held at the reduced pressure of the atmosphere; so gas dissolved in the water may escape into unfilled space at the top of the container. Atmospheric gas present in that air space may also dissolve into the water sample. Other chemical reaction equilibria may change if the water sample changes temperature. Finely divided solid particles formerly suspended by water turbulence may settle to the bottom of the sample container, or a solid phase may form from biological growth or chemical precipitation. Microorganisms within the water sample may biochemically alter concentrations of oxygen, carbon dioxide, and organic compounds. Changing carbon dioxide concentrations may alter pH and change solubility of chemicals of interest. These problems are of special concern during measurement of chemicals assumed to be significant at very low concentrations.
Filtering a manually collected water sample (grab sample) for analysis

Sample preservation may partially resolve the second problem. A common procedure is keeping samples cold to slow the rate of chemical reactions and phase change, and analyzing the sample as soon as possible; but this merely minimizes the changes rather than preventing them. A useful procedure for determining influence of sample containers during delay between sample collection and analysis involves preparation for two artificial samples in advance of the sampling event. One sample container is filled with water known from previous analysis to contain no detectable amount of the chemical of interest. This sample, called a "blank," is opened for exposure to the atmosphere when the sample of interest is collected, then resealed and transported to the laboratory with the sample for analysis to determine if sample holding procedures introduced any measurable amount of the chemical of interest. The second artificial sample is collected with the sample of interest, but then "spiked" with a measured additional amount of the chemical of interest at the time of collection. The blank and spiked samples are carried with the sample of interest and analyzed by the same methods at the same times to determine any changes indicating gains or losses during the elapsed time between collection and analysis.
Testing in response to natural disasters and other emergencies

Inevitably after events such as earthquakes and tsunamis, there is an immediate response by the aid agencies as relief operations get underway to try and restore basic infrastructure and provide the basic fundamental items that are necessary for survival and subsequent recovery. Access to clean drinking water and adequate sanitation is a priority at times like this. The threat of disease increases hugely due to the large numbers of people living close together, often in squalid conditions, and without proper sanitation.

After a natural disaster, as far as water quality testing is concerned there are widespread views on the best course of action to take and a variety of methods can be employed. The key basic water quality parameters that need to be addressed in an emergency are bacteriological indicators of fecal contamination, free chlorine residual, pH, turbidity and possibly conductivity/total dissolved solids. There are a number of portable water test kits on the market widely used by aid and relief agencies for carrying out such testing.

After major natural disasters, a considerable length of time might pass before water quality returns to pre-disaster levels. For example, following the 2004 Indian Ocean Tsunami the Colombo-based International Water Management Institute (IWMI) monitored the effects of saltwater and concluded that the wells recovered to pre-tsunami drinking water quality one and a half years after the event. IWMI developed protocols for cleaning wells contaminated by saltwater; these were subsequently officially endorsed by the World Health Organization as part of its series of Emergency Guidelines.
Chemical analysis
A gas chromatograph-
mass spectrometer measures pesticides and other organic pollutants

The simplest methods of chemical analysis are those measuring chemical elements without respect to their form. Elemental analysis for dissolved oxygen, as an example, would indicate a concentration of 890,000 milligrams per litre (mg/L) of water sample because water is made of oxygen. The method selected to measure dissolved oxygen should differentiate between diatomic oxygen and oxygen combined with other elements. The comparative simplicity of elemental analysis has produced a large amount of sample data and water quality criteria for elements sometimes identified as heavy metals. Water analysis for heavy metals must consider soil particles suspended in the water sample. These suspended soil particles may contain measurable amounts of metal. Although the particles are not dissolved in the water, they may be consumed by people drinking the water. Adding acid to a water sample to prevent loss of dissolved metals onto the sample container may dissolve more metals from suspended soil particles. Filtration of soil particles from the water sample before acid addition, however, may cause loss of dissolved metals onto the filter. The complexities of differentiating similar organic molecules are even more challenging.

Making these complex measurements can be expensive. Because direct measurements of water quality can be expensive, ongoing monitoring programs are typically conducted by government agencies. However, there are local volunteer programs and resources available for some general assessment. Tools available to the general public include on-site test kits, commonly used for home fish tanks, and biological assessment procedures.
Real-time monitoring

Although water quality is usually sampled and analyzed at laboratories, nowadays, citizens demand real-time information about the water they are drinking. During the last years, several companies  are deploying worldwide real-time remote monitoring systems for measuring water pH, turbidity or dissolved oxygen levels.
Drinking water indicators
An electrical conductivity meter is used to measure total dissolved solids

The following is a list of indicators often measured by situational category:

    Alkalinity
    Color of water
    pH
    Taste and odor (geosmin, 2-Methylisoborneol (MIB), etc.)
    Dissolved metals and salts (sodium, chloride, potassium, calcium, manganese, magnesium)
    Microorganisms such as fecal coliform bacteria (Escherichia coli), Cryptosporidium, and Giardia lamblia; see Bacteriological water analysis
    Dissolved metals and metalloids (lead, mercury, arsenic, etc.)
    Dissolved organics: colored dissolved organic matter (CDOM), dissolved organic carbon (DOC)
    Radon
    Heavy metals
    Pharmaceuticals
    Hormone analogs

Environmental indicators
Physical indicators

    Water Temperature
    Specifics Conductance or EC, Electrical Conductance, Conductivity
    Total suspended solids (TSS)
    Transparency or Turbidity

                          

    Total dissolved solids (TDS)
    Odour of water
    Color of water
    Taste of water

Chemical indicators

    pH
    Biochemical oxygen demand (BOD)
    Chemical oxygen demand (COD)
    Dissolved oxygen (DO)
    Total hardness (TH)

                          

    Heavy metals
    Nitrate
    Orthophosphates
    Pesticides
    Surfactants

Biological indicators

    Ephemeroptera
    Plecoptera
    Mollusca
    Trichoptera

                          

    Escherichia coli (E. coli)
    Coliform bacteria

Biological monitoring metrics have been developed in many places, and one widely used measure is the presence and abundance of members of the insect orders Ephemeroptera, Plecoptera and Trichoptera. (Common names are, respectively, Mayfly, Stonefly and Caddisfly.) EPT indexes will naturally vary from region to region, but generally, within a region, the greater the number of taxa from these orders, the better the water quality. Organisations in the United States, such as EPA offer guidance on developing a monitoring program and identifying members of these and other aquatic insect orders.

Individuals interested in monitoring water quality who cannot afford or manage lab scale analysis can also use biological indicators to get a general reading of water quality. One example is the IOWATER volunteer water monitoring program, which includes a benthic macroinvertebrate indicator key.

Bivalve molluscs are largely used as bioindicators to monitor the health of aquatic environments in both fresh water and the marine environments. Their population status or structure, physiology, behaviour or the level of contamination with elements or compounds can indicate the state of contamination status of the ecosystem. They are particularly useful since they are sessile so that they are representative of the environment where they are sampled or placed. A typical project is the Mussel Watch Programme, but today they are used worldwide.

The Southern African Scoring System (SASS) method is a biological water quality monitoring system based on the presence of benthic macroinvertebrates. The SASS aquatic biomonitoring tool has been refined over the past 30 years and is now on the fifth version (SASS5) which has been specifically modified in accordance with international standards, namely the ISO/IEC 17025 protocol. The SASS5 method is used by the South African Department of Water Affairs as a standard method for River Health Assessment, which feeds the national River Health Programme and the national Rivers Database.
Water quality standards and reports
World Health Organisation guideline

    World Health Organisation (WHO) guideline for Drinking Water Standards.

Indian Council of Medical Research standards

    Indian Council of Medical Research (ICMR) Standards for Drinking Water.

International standards

Water quality regulated by the International Organization for Standardization (ISO) is covered in the section of ICS 13.060, ranging from water sampling, drinking water, industrial class water, sewage water, and examination of water for chemical, physical or biological properties. ICS 91.140.60 covers the standards of water supply systems.
National specification for drinking water
European Union
Further information: Water supply and sanitation in the European Union

The water policy of the European Union is primarily codified in three directives:

    Directive on Urban Waste Water Treatment (91/271/EEC) of 21 May 1991 concerning discharges of municipal and some industrial wastewaters;
    The Drinking Water Directive (98/83/EC) of 3 November 1998 concerning potable water quality;
    Water Framework Directive (2000/60/EC) of 23 October 2000 concerning water resources management.

United Kingdom

In England and Wales acceptable levels for drinking water supply are listed in the "Water Supply (Water Quality) Regulations 2000."
South Africa
Further information: Water supply and sanitation in South Africa

Water quality guidelines for South Africa are grouped according to potential user types (e.g. domestic, industrial) in the 1996 Water Quality Guidelines. Drinking water quality is subject to the South African National Standard (SANS) 241 Drinking Water Specification.
United States

In the United States, Water Quality Standards are created by state agencies for different types of water bodies and water body locations per desired uses.The Clean Water Act (CWA) requires each governing jurisdiction (states, territories, and covered tribal entities) to submit a set of biennial reports on the quality of water in their area. These reports are known as the 303(d), 305(b) and 314 reports, named for their respective CWA provisions, and are submitted to, and approved by, EPA. These reports are completed by the governing jurisdiction, typically a state environmental agency, and are available on the web. In coming years it is expected that the governing jurisdictions will submit all three reports as a single document, called the "Integrated Report." The 305(b) report (National Water Quality Inventory Report to Congress) is a general report on water quality, providing overall information about the number of miles of streams and rivers and their aggregate condition. The 314 report has provided similar information for lakes. The CWA requires states to adopt water quality standards for each of the possible designated uses that they assign to their waters. Should evidence suggest or document that a stream, river or lake has failed to meet the water quality criteria for one or more of its designated uses, it is placed on the 303(d) list of impaired waters. Once a state has placed a water body on the 303(d) list, it must develop a management plan establishing Total Maximum Daily Loads for the pollutant(s) impairing the use of the water. These TMDLs establish the reductions needed to fully support the designated uses.



 SUBSCRIBERS - ( LINKS) :FOLLOW / REF / 2 /

findleverage.blogspot.com
  Krkz77@yahoo.com
  +234-81-83195664

No comments:

Post a Comment