Phytoremediation (from Ancient Greek φυτο (phyto), meaning
"plant", and Latin remedium, meaning "restoring balance") describes the
treatment of environmental problems (bioremediation)
through the use of plants
that mitigate the environmental problem without the need to excavate the
contaminant material and dispose of it elsewhere.
Phytoremediation consists of mitigating pollutant
concentrations in contaminated soils, water,
or air, with plants
able to contain, degrade, or eliminate metals, pesticides, solvents, explosives, crude oil
and its derivatives, and various other contaminants from the media that contain
them.
Application
Phytoremediation may be applied wherever the soil or static water
environment has become polluted or is suffering ongoing chronic pollution.
Examples where phytoremediation has been used successfully include the
restoration of abandoned metal mine workings, reducing the impact of
contaminants in soils, water, or air. Contaminants such as metals, pesticides,
solvents, explosives, and crude oil and its derivatives, have been mitigated in
phytoremediation projects worldwide. Many plants such as mustard
plants, alpine pennycress, hemp, and pigweed have
proven to be successful at hyperaccumulating contaminants at toxic waste
sites.
Over the past 20 years, this technology has become
increasingly popular and has been employed at sites with soils contaminated
with lead, uranium, and arsenic. While it has the advantage that environmental
concerns may be treated in situ; one major disadvantage of phytoremediation is
that it requires a long-term commitment, as the process is dependent on a
plant's ability to grow and thrive in an environment that is not ideal for
normal plant growth. Phytoremediation may be applied wherever the soil or static water
environment has become polluted or is suffering ongoing chronic pollution.
Examples where phytoremediation has been used successfully include the
restoration of abandoned metal-mine workings, reducing the impact of sites
where polychlorinated biphenyls have been
dumped during manufacture and mitigation of ongoing coal mine discharges.
Phytoremediation refers to the natural ability of certain plants
called hyperaccumulators to bioaccumulate, degrade,or
render harmless contaminants in soils, water, or air.
Advantages and limitations
- Advantages:
- the cost of the phytoremediation is lower than that of traditional processes both in situ and ex situ
- the plants can be easily monitored
- the possibility of the recovery and re-use of valuable metals (by companies specializing in “phyto mining”)
- it is potentially the least harmful method because it uses naturally occurring organisms and preserves the environment in a more natural state.
- Limitations:
- phytoremediation is limited to the surface area and depth occupied by the roots.
- slow growth and low biomass require a long-term commitment
- with plant-based systems of remediation, it is not possible to completely prevent the leaching of contaminants into the groundwater (without the complete removal of the contaminated ground, which in itself does not resolve the problem of contamination)
- the survival of the plants is affected by the toxicity of the contaminated land and the general condition of the soil.
- bio-accumulation of contaminants, especially metals, into the plants which then pass into the food chain, from primary level consumers upwards or requires the safe disposal of the affected plant material.
Various phytoremediation processes
A range of processes mediated by plants or algae are useful
in treating environmental problems:
- Phytoextraction — uptake and concentration of substances from the environment into the plant biomass.
- Phytostabilization — reducing the mobility of substances in the environment, for example, by limiting the leaching of substances from the soil.
- Phytotransformation — chemical modification of environmental substances as a direct result of plant metabolism, often resulting in their inactivation, degradation (phytodegradation), or immobilization (phytostabilization).
- Phytostimulation — enhancement of soil microbial activity for the degradation of contaminants, typically by organisms that associate with roots. This process is also known as rhizosphere degradation. Phytostimulation can also involve aquatic plants supporting active populations of microbial degraders, as in the stimulation of atrazine degradation by hornwort.[2]
- Phytovolatilization — removal of substances from soil or water with release into the air, sometimes as a result of phytotransformation to more volatile and/or less polluting substances.
- Rhizofiltration — filtering water through a mass of roots to remove toxic substances or excess nutrients. The pollutants remain absorbed in or adsorbed to the roots.
Phytoextraction
Phytoextraction (or phytoaccumulation) uses plants or
algae to remove contaminants from soils, sediments or water into harvestable
plant biomass (organisms that take larger-than-normal amounts of contaminants
from the soil are called hyperaccumulators). Phytoextraction has been
growing rapidly in popularity worldwide for the last twenty years or so. In
general, this process has been tried more often for extracting heavy metals
than for organics. At the time of disposal, contaminants are typically
concentrated in the much smaller volume of the plant matter than in the
initially contaminated soil or sediment. 'Mining with plants', or phytomining,
is also being experimented with:
The plants absorb contaminants through the root system and
store them in the root biomass and/or transport them up into the stems and/or
leaves. A living plant may continue to absorb contaminants until it is
harvested. After harvest, a lower level of the contaminant will remain in the
soil, so the growth/harvest cycle must usually be repeated through several
crops to achieve a significant cleanup. After the process, the cleaned soil can
support other vegetation.
Advantages: The main advantage of phytoextraction is
environmental friendliness. Traditional methods that are used for cleaning up
heavy metal-contaminated soil disrupt soil structure and reduce soil
productivity, whereas phytoextraction can clean up the soil without causing any
kind of harm to soil quality. Another benefit of phytoextraction is that it is
less expensive than any other clean-up process.
Disadvantages: As this process is controlled by
plants, it takes more time than anthropogenic
soil clean-up methods.
Two versions of phytoextraction:
- natural hyper-accumulation, where plants naturally take up the contaminants in soil unassisted.
- induced or assisted hyper-accumulation, where a conditioning fluid containing a chelator or another agent is added to soil to increase metal solubility or mobilization so that the plants can absorb them more easily. In many cases natural hyperaccumulators are metallophyte plants that can tolerate and incorporate high levels of toxic metals.
Examples of phytoextraction (see also 'Table of hyperaccumulators'):
- Arsenic, using the Sunflower (Helianthus annuus), or the Chinese Brake fern (Pteris vittata), a hyperaccumulator. Chinese Brake fern stores arsenic in its leaves.
- Cadmium, using willow (Salix viminalis): In 1999, one research experiment performed by Maria Greger and Tommy Landberg suggested willow has a significant potential as a phytoextractor of Cadmium (Cd), Zinc (Zn), and Copper (Cu), as willow has some specific characteristics like high transport capacity of heavy metals from root to shoot and huge amount of biomass production; can be used also for production of bio energy in the biomass energy power plant.
- Cadmium and zinc, using Alpine pennycress (Thlaspi caerulescens), a hyperaccumulator of these metals at levels that would be toxic to many plants. On the other hand, the presence of copper seems to impair its growth (see table for reference).
- Lead, using Indian Mustard (Brassica juncea), Ragweed (Ambrosia artemisiifolia), Hemp Dogbane (Apocynum cannabinum), or Poplar trees, which sequester lead in their biomass.
- Salt-tolerant (moderately halophytic) barley and/or sugar beets are commonly used for the extraction of sodium chloride (common salt) to reclaim fields that were previously flooded by sea water.
- Caesium-137 and strontium-90 were removed from a pond using sunflowers after the Chernobyl accident.
- Mercury, selenium and organic pollutants such as polychlorinated biphenyls (PCBs) have been removed from soils by transgenic plants containing genes for bacterial enzymes.
Phytostabilization
Phytostabilization focuses on long-term stabilization and
containment of the pollutant. Example, the plant's presence can reduce wind
erosion; or the plant's roots can prevent water erosion, immobilize the
pollutants by adsorption or accumulation, and provide a zone around the roots
where the pollutant can precipitate and stabilize. Unlike phytoextraction,
phytostabilization focuses mainly on sequestering pollutants in soil near the
roots but not in plant tissues. Pollutants become less bioavailable, and
livestock, wildlife, and human exposure is reduced. An example application of
this sort is using a vegetative cap to stabilize and contain mine
tailings.
Phytotransformation
In the case of organic
pollutants, such as pesticides, explosives,
solvents,
industrial chemicals, and other xenobiotic
substances, certain plants, such as Cannas,
render these substances non-toxic by their metabolism.
In other cases, microorganisms living in association with plant roots
may metabolize these substances in soil or water. These complex and recalcitrant compounds cannot
be broken down to basic molecules (water, carbon-dioxide, etc.) by plant
molecules, and, hence, the term phytotransformation represents a change
in chemical structure without complete breakdown of the compound. The term
"Green Liver Model" is used to describe phytotransformation, as
plants behave analogously to the human liver when dealing
with these xenobiotic
compounds (foreign compound/pollutant).[9]
After uptake of the xenobiotics, plant enzymes increase the polarity of the
xenobiotics by adding functional groups such as hydroxyl groups (-OH).
This is known as Phase I metabolism, similar to the way that
the human liver increases the polarity of drugs and foreign compounds (Drug
Metabolism). Whereas in the human liver enzymes such as Cytochrome
P450s are responsible for the initial reactions, in plants enzymes such as
nitroreductases carry out the same role.
In the second stage of phytotransformation, known as Phase
II metabolism, plant biomolecules such as glucose and amino acids are added to
the polarized xenobiotic to further increase the polarity (known as
conjugation). This is again similar to the processes occurring in the human
liver where glucuronidation (addition of glucose molecules by the
UGT (e.g. UGT1A1)
class of enzymes) and glutathione addition reactions occur on reactive centres
of the xenobiotic.
Phase I and II reactions serve to increase the polarity and
reduce the toxicity of the compounds, although many exceptions to the rule are
seen. The increased polarity also allows for easy transport of the xenobiotic
along aqueous channels.
In the final stage of phytotransformation (Phase III
metabolism), a sequestration of the xenobiotic occurs within the plant. The
xenobiotics polymerize in a lignin-like manner and develop a complex structure that is
sequestered in the plant. This ensures that the xenobiotic is safely stored,
and does not affect the functioning of the plant. However, preliminary studies
have shown that these plants can be toxic to small animals (such as snails),
and, hence, plants involved in phytotransformation may need to be maintained in
a closed enclosure.
Hence, the plants reduce toxicity (with exceptions) and
sequester the xenobiotics in phytotransformation. Trinitrotoluene
phytotransformation has been extensively researched and a transformation
pathway has been proposed.
Role of genetics
Breeding programs and genetic engineering are powerful methods for
enhancing natural phytoremediation capabilities, or for introducing new
capabilities into plants. Genes for phytoremediation may originate from a micro-organism
or may be transferred from one plant to another variety better adapted to the
environmental conditions at the cleanup site. For example, genes encoding a
nitroreductase from a bacterium were inserted into tobacco and showed faster
removal of TNT and enhanced resistance to the toxic effects of TNT. Researchers
have also discovered a mechanism in plants that allows them to grow even when
the pollution concentration in the soil is lethal for non-treated plants. Some
natural, biodegradable compounds, such as exogenous polyamines,
allow the plants to tolerate concentrations of pollutants 500 times higher than
untreated plants, and to absorb more pollutants.
Hyperaccumulators and biotic interactions
A plant is said to be a hyperaccumulator
if it can concentrate the pollutants in a minimum percentage which varies
according to the pollutant involved (for example: more than 1000 mg/kg of
dry weight for nickel,
copper, cobalt, chromium or lead; or more than
10,000 mg/kg for zinc
or manganese).
This capacity for accumulation is due to hypertolerance, or phytotolerance:
the result of adaptative evolution from the plants to hostile environments
through many generations. A number of interactions may be affected by metal
hyperaccumulation, including protection, interferences with neighbour plants of
different species, mutualism (including mycorrhizae,
pollen and seed
dispersal), commensalism, and biofilm.
Table of hyperaccumulators
- Hyperaccumulators table – 1 : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, Naphthalene, Pb, Pd, Pt, Se, Zn
- Hyperaccumulators table – 2 : Nickel
- Hyperaccumulators table – 3 : Radionuclides (Cd, Cs, Co, Pu, Ra, Sr, U), Hydrocarbons, Organic Solvents.
Phytoscreening
As plants are able to translocate and accumulate particular
types of contaminants, plants can be used as biosensors of
subsurface contamination, thereby allowing investigators to quickly delineate
contaminant plumes. Chlorinated solvents, such as trichloroethylene,
have been observed in tree trunks at concentrations related to groundwater
concentrations. To ease field implementation of phytoscreening, stanard methods
have been developed to extract a section of the tree trunk for later laboratory
analysis, often by using an increment
borer. Phytoscreening may lead to more optimized site investigations and
reduce contaminated site cleanup costs.
SUBSCRIBERS - ( LINKS) :FOLLOW / REF / 2 /
findleverage.blogspot.com
Krkz77@yahoo.com
+234-81-83195664
For affiliation:
No comments:
Post a Comment