Hydraulic conductivity, symbolically represented as K, is a
property of vascular plants, soils and rocks, that describes
the ease with which a fluid (usually water) can move through pore spaces or
fractures. It depends on the intrinsic permeability of the material and
on the degree of saturation, and on the density and viscosity of
the fluid. Saturated hydraulic conductivity, K describes water movement through saturated
media.
Typical ranges of hydraulic conductivity for different soils
can be found on Geotechdata.info
database.
Methods of determination
Overview of determination methods
There are two broad categories of determining hydraulic
conductivity:
- Empirical approach by which the hydraulic conductivity is correlated to soil properties like pore size and particle size (grain size) distributions, and soil texture
- Experimental approach by which the hydraulic conductivity is determined from hydraulic experiments using Darcy's law
The experimental approach is broadly classified into:
- Laboratory tests using soil samples subjected to hydraulic experiments
- Field tests (on site, in situ) that are differentiated into:
- small scale field tests, using observations of the water level in cavities in the soil
- large scale field tests, like pump tests in wells or by observing the functioning of existing horizontal drainage systems.
The small scale field tests are further subdivided into:
- infiltration tests in cavities above the water table
- slug tests in cavities below the water table
Estimation by empirical approach
Estimation from grain size
Allen Hazen derived an empirical
formula for approximating hydraulic conductivity from grain size analyses:
where
Hazen's empirical coefficient, which takes a value between 0.4
and 10.0 (depending on literatures), with an average value of 1.0. A.F.
Salarashayeri & M. Siosemarde give C as usually taken between 1.0 and 1.5,
with D in mm and K in cm/s.
Pedotransfer function
A pedotransfer function (PTF) is a specialized
empirical estimation method, used primarily in the soil
sciences, however has increasing use in hydrogeology. There are many
different PTF methods, however, they all attempt to determine soil properties,
such as hydraulic conductivity, given several measured soil properties, such as
soil particle
size, and bulk density.
Determination by experimental approach
There are relatively simple and inexpensive laboratory tests
that may be run to determine the hydraulic conductivity of a soil:
constant-head method and falling-head method.
Laboratory methods
Constant-head method
The constant-head
method is typically used on granular soil. This procedure allows water to
move through the soil under a steady state head condition while the quantity
(volume) of water flowing through the soil specimen is measured over a period
of time. By knowing the quantity of water measured, length of specimen,
cross-sectional area of the specimen, time
required for the quantity of water to be discharged, and head
, the hydraulic conductivity can be calculated:
where
is the flow velocity. Using Darcy's
Law:
and expressing the hydraulic gradient
as:
where
is the difference of hydraulic head over distance , yields:
Solving for gives:
Falling-head method
The falling-head
method is totally different from the constant head methods in its initial
setup; however, the advantage to the falling-head method is that it can be used
for both fine-grained and coarse-grained soils. The soil sample is first
saturated under a specific head condition. The water is then allowed to flow
through the soil without maintaining a constant pressure head.
In-situ (field) methods
Augerhole method
There are also in-situ methods for measuring the hydraulic
conductivity in the field.
When the water table is shallow, the augerhole method, a slug test, can be used for determining the hydraulic conductivity below the water table.
The method was developed by Hooghoudt (1934) in The Netherlands and introduced in the US by Van Bavel en Kirkham (1948).
The method uses the following steps:
When the water table is shallow, the augerhole method, a slug test, can be used for determining the hydraulic conductivity below the water table.
The method was developed by Hooghoudt (1934) in The Netherlands and introduced in the US by Van Bavel en Kirkham (1948).
The method uses the following steps:
- an augerhole is perforated into the soil to below the water table
- water is bailed out from the augerhole
- the rate of rise of the water level in the hole is recorded
- the K-value is calculated from the data as:
K = F (Ho-Ht) / t
Cumulative frequency distribution (lognormal) of hydraulic
conductivity (X-data)
where: K = horizontal saturated hydraulic conductivity
(m/day), H = depth of the waterlevel in the hole relative to the water table in
the soil (cm), Ht = H at time t, Ho = H at time t = 0, t = time (in seconds)
since the first measurement of H as Ho, and F is a factor depending on the
geometry of the hole:
F = 4000
/
(20+D/
)(2−
/D)
where:
= radius of the cylindrical hole (cm),
is the average depth of the water level in the hole relative
to the water table in the soil (cm), found as
=(Ho+Ht)/2, and D is the depth of the bottom of the hole
relative to the water table in the soil (cm).
The picture shows a large variation of K-values measured
with the augerhole method in an area of 100 ha.[6]
The ratio between the highest and lowest values is 25. The cumulative frequency
distribution is lognormal and was made with the CumFreq
program.
Related magnitudes
Transmissivity
The transmissivity is a measure of how much water can be
transmitted horizontally, such as to a pumping well.
Transmissivity should not be confused with the
similar word transmittance used in optics, meaning the
fraction of incident light that passes through a sample.
An aquifer may consist of
soil layers. The transmissivity for horizontal flow of the
soil layer with a saturated thickness and horizontal hydraulic
conductivity is:
Transmissivity is directly proportional to horizontal
hydraulic conductivity and thickness . Expressing in m/day and in m, the
transmissivity is found in units m2/day.
The total transmissivity of the aquifer is:
The total transmissivity of the aquifer is:
where signifies the summation over all layers .
The apparent horizontal hydraulic conductivity of the
aquifer is:
where , the total thickness of the aquifer, is , with
.
The transmissivity of an aquifer can be determined from pumping
tests.
Influence of the water table
When a soil layer is above the water table, it is not saturated and does not contribute to the transmissivity. When the soil layer is entirely below the water table, its saturated thickness corresponds to the thickness of the soil layer itself. When the water table is inside a soil layer, the saturated thickness corresponds to the distance of the water table to the bottom of the layer. As the water table may behave dynamically, this thickness may change from place to place or from time to time, so that the transmissivity may vary accordingly.
In a semi-confined aquifer, the water table is found within a soil layer with a negligibly small transmissivity, so that changes of the total transmissivity (Dt) resulting from changes in the level of the water table are negligibly small.
When pumping water from an unconfined aquifer, where the water table is inside a soil layer with a significant transmissivity, the water table may be drawn down whereby the transmissivity reduces and the flow of water to the well diminishes.
When a soil layer is above the water table, it is not saturated and does not contribute to the transmissivity. When the soil layer is entirely below the water table, its saturated thickness corresponds to the thickness of the soil layer itself. When the water table is inside a soil layer, the saturated thickness corresponds to the distance of the water table to the bottom of the layer. As the water table may behave dynamically, this thickness may change from place to place or from time to time, so that the transmissivity may vary accordingly.
In a semi-confined aquifer, the water table is found within a soil layer with a negligibly small transmissivity, so that changes of the total transmissivity (Dt) resulting from changes in the level of the water table are negligibly small.
When pumping water from an unconfined aquifer, where the water table is inside a soil layer with a significant transmissivity, the water table may be drawn down whereby the transmissivity reduces and the flow of water to the well diminishes.
Resistance
The resistance to vertical flow (Ri) of
the
soil layer with a saturated thickness and vertical
hydraulic conductivity Kvi is:
Ri =
/ Kvi
Expressing Kvi in m/day and
in m, the resistance (Ri) is expressed in days.
The total resistance (Rt) of the aquifer is:
The total resistance (Rt) of the aquifer is:
Rt = Σ Ri = Σ
/ Kvi
where Σ signifies the summation over all layers:
= 1, 2, 3, . . .
The apparent vertical hydraulic conductivity (KvA) of the aquifer is:
The apparent vertical hydraulic conductivity (KvA) of the aquifer is:
KvA = Dt / Rt
where Dt is the total thickness of the aquifer: Dt = Σ
, with
= 1, 2, 3, . . .
The resistance plays a role in aquifers where a
sequence of layers occurs with varying horizontal permeability so that horizontal
flow is found mainly in the layers with high horizontal permeability while the
layers with low horizontal permeability transmit the water mainly in a vertical
sense.
Anisotropy
When the horizontal and vertical hydraulic conductivity (Khi
and Kvi) of the
soil layer differ considerably, the layer is said to be anisotropic
with respect to hydraulic conductivity.
When the apparent horizontal and vertical hydraulic conductivity (KhA and KvA) differ considerably, the aquifer is said to be anisotropic with respect to hydraulic conductivity.
An aquifer is called semi-confined when a saturated layer with a relatively small horizontal hydraulic conductivity (the semi-confining layer or aquitard) overlies a layer with a relatively high horizontal hydraulic conductivity so that the flow of groundwater in the first layer is mainly vertical and in the second layer mainly horizontal.
The resistance of a semi-confining top layer of an aquifer can be determined from pumping tests.
When calculating flow to drains or to a well field in an aquifer with the aim to control the water table, the anisotropy is to be taken into account, otherwise the result may be erroneous.
When the apparent horizontal and vertical hydraulic conductivity (KhA and KvA) differ considerably, the aquifer is said to be anisotropic with respect to hydraulic conductivity.
An aquifer is called semi-confined when a saturated layer with a relatively small horizontal hydraulic conductivity (the semi-confining layer or aquitard) overlies a layer with a relatively high horizontal hydraulic conductivity so that the flow of groundwater in the first layer is mainly vertical and in the second layer mainly horizontal.
The resistance of a semi-confining top layer of an aquifer can be determined from pumping tests.
When calculating flow to drains or to a well field in an aquifer with the aim to control the water table, the anisotropy is to be taken into account, otherwise the result may be erroneous.
Relative properties
Because of their high porosity and permeability, sand and gravel aquifers have
higher hydraulic conductivity than clay or unfractured granite aquifers.
Sand or gravel aquifers would thus be easier to extract water from (e.g., using
a pumping well)
because of their high transmissivity, compared to clay or unfractured bedrock
aquifers.
Hydraulic conductivity has units with dimensions of length
per time (e.g., m/s, ft/day and (gal/day)/ft² ); transmissivity then has units with dimensions
of length squared per time. The following table gives some typical ranges
(illustrating the many orders of magnitude which are likely) for K
values.
Hydraulic conductivity (K) is one of the most complex
and important of the properties of aquifers in hydrogeology as the values found
in nature:
- range over many orders of magnitude (the distribution is often considered to be lognormal),
- vary a large amount through space (sometimes considered to be randomly spatially distributed, or stochastic in nature),
- are directional (in general K is a symmetric second-rank tensor; e.g., vertical K values can be several orders of magnitude smaller than horizontal K values),
- are scale dependent (testing a m³ of aquifer will generally produce different results than a similar test on only a cm³ sample of the same aquifer),
- must be determined indirectly through field pumping tests, laboratory column flow tests or inverse computer simulation, (sometimes also from grain size analyses), and
- are very dependent (in a non-linear way) on the water content, which makes solving the unsaturated flow equation difficult. In fact, the variably saturated K for a single material varies over a wider range than the saturated K values for all types of materials (see chart below for an illustrative range of the latter).
Ranges of values for natural materials
Table of saturated hydraulic conductivity (K)
values found in nature
Values are for typical fresh groundwater
conditions — using standard values of viscosity and
specific
gravity for water at 20°C and 1 atm. See the similar table derived from the
same source for intrinsic permeability values.
SUBSCRIBERS - ( LINKS) :FOLLOW / REF / 2 /
findleverage.blogspot.com
Krkz77@yahoo.com
+234-81-83195664
No comments:
Post a Comment