Saturday, 31 May 2014

Gas to liquids / REF / 223 / 2014


Gas to liquids (GTL) is a refinery process to convert natural gas or other gaseous hydrocarbons into longer-chain hydrocarbons such as gasoline or diesel fuel. Methane-rich gases are converted into liquid synthetic fuels either via direct conversion—using non-catalytic processes that convert methane to methanol in one step—or via syngas as an intermediate, such as in the Fischer Tropsch, Mobil and syngas to gasoline plus processes.

Fischer–Tropsch process

The Fischer–Tropsch process starts with partial oxidation of methane (natural gas) to carbon dioxide, carbon monoxide, hydrogen gas and water. The ration of carbon monoxide to hydrogen is adjusted using the water gas shift reaction, while the excess carbon dioxide is removed with aqueous solutions of alkanolamines (or physical solvents). Removing the water yields synthesis gas (syngas) which is chemically reacted over an iron or cobalt catalyst to produce liquid hydrocarbons and other byproducts. Oxygen is provided from a cryogenic air separation unit.

Methanol to gasoline process (MTG)

In the early 1970s, Mobil developed an alternative procedure in which natural gas is converted to syngas, and then methanol. The methanol polymerized over a zeolite catalyst to form alkanes.
Methanol is made from methane (natural gas) in a series of three reactions:
CH4 + H2O → CO + 3 H2   ΔrH = +206 kJ mol−1
CO + H2O → CO2 + H2   ΔrH = -41 kJ mol−1
Synthesis
2 H2 + CO → CH3OH   ΔrH = -92 kJ mol−1
The methanol thus formed may be converted to gasoline by the Mobil process. First methanol is dehydrated to give dimethyl ether:
2 CH3OH → CH3OCH3 + H2O
This is then further dehydrated over a zeolite catalyst, ZSM-5, to give a gasoline with hydrocarbons of five or more carbon atoms making up 80% of the fuel by weight. ZSM-5 is deactivated by a build-up of carbon in a process known as "coking". The catalyst can be re-activated by burning off the coke in a stream of hot (500 °C (930 °F)) air; however, the number of re-activation cycles is limited.

Syngas to gasoline plus process (STG+)

A third gas-to-liquids process builds on the MTG technology by converting natural gas-derived syngas directly into drop-in gasoline and jet fuel via a thermochemical single-loop process.
The STG+ process follows four principal steps in one continuous process loop. This process consists of four fixed bed reactors in series in which a syngas is converted to synthetic fuels. The steps for producing high-octane synthetic gasoline are as follows:
  1. Methanol Synthesis: Syngas is fed to Reactor 1, the first of four reactors, which converts most of the syngas (CO and H2) to methanol (CH3OH) when passing through the catalyst bed.
  2. Dimethyl Ether (DME) Synthesis: The methanol-rich gas from Reactor 1 is next fed to Reactor 2, the second STG+ reactor. The methanol is exposed to a catalyst and much of it is converted to DME, which involves a dehydration from methanol to form DME (CH3OCH3).
  3. Gasoline synthesis: The Reactor 2 product gas is next fed to Reactor 3, the third reactor containing the catalyst for conversion of DME to hydrocarbons including paraffins (alkanes), aromatics, naphthenes (cycloalkanes) and small amounts of olefins (alkenes), mostly from C6 (number of carbon atoms in the hydrocarbon molecule) to C10.
  4. Gasoline Treatment: The fourth reactor provides transalkylation and hydrogenation treatment to the products coming from Reactor 3. The treatment reduces durene (tetramethylbenzene)/isodurene and trimethylbenzene components that have high freezing points and must be minimized in gasoline. As a result, the synthetic gasoline product has high octane and desirable viscometric properties.
  5. Separator: Finally, the mixture from Reactor 4 is condensed to obtain gasoline. The non-condensed gas and gasoline are separated in a conventional condenser/separator. Most of the non-condensed gas from the product separator becomes recycled gas and is sent back to the feed stream to Reactor 1, leaving the synthetic gasoline product composed of paraffins, aromatics and naphthenes.

Commercial uses

Using gas-to-liquids processes, refineries can convert some of their gaseous waste products (flare gas) into valuable fuel oils, which can be sold as is or blended only with diesel fuel. The World Bank estimates that over 150 billion cubic metres (5.3×1012 cu ft) of natural gas are flared or vented annually, an amount worth approximately $30.6 billion, equivalent to 25% of the United States' gas consumption or 30% of the European Union's annual gas consumption, a resource that could be useful using GTL. Gas-to-liquids processes may also be used for the economic extraction of gas deposits in locations where it is not economical to build a pipeline. This process will be increasingly significant as crude oil resources are depleted.
The use of microchannel reactors shows promise for the conversion of unconventional, remote and problem gas into valuable liquid fuels. GTL plants based on microchannel reactors are significantly smaller than those using conventional fixed bed or slurry bed reactors, enabling modular plants that can be deployed cost effectively in remote locations and on smaller fields than is possible with competing systems.
One other proposed solution is to use a novel FPSO for offshore conversion of gas to liquids such as methanol, diesel, petrol, synthetic crude, and naphtha.
SUBSCRIBERS - ( LINKS) :FOLLOW / REF / 2 /

findleverage.blogspot.com
  Krkz77@yahoo.com
  +234-81-83195664

No comments:

Post a Comment