Tuesday 30 September 2014

Reference class forecasting / REF / 750 / 2014



Reference class forecasting, or comparison class forecasting, is the method of predicting the future, through looking at similar past situations and their outcomes.
Reference class forecasting predicts the outcome of a planned action based on actual outcomes in a reference class of similar actions to that being forecast. The theories behind reference class forecasting were developed by Daniel Kahneman and Amos Tversky. The theoretical work helped Kahneman win the Nobel Prize in Economics.
Kahneman and Tversky  found that human judgment is generally optimistic due to overconfidence and insufficient consideration of distributional information about outcomes. Therefore, people tend to underestimate the costs, completion times, and risks of planned actions, whereas they tend to overestimate the benefits of those same actions. Such error is caused by actors taking an "inside view," where focus is on the constituents of the specific planned action instead of on the actual outcomes of similar ventures that have already been completed.
Kahneman and Tversky concluded that disregard of distributional information, that is, risk, is perhaps the major source of error in forecasting. On that basis they recommended that forecasters "should therefore make every effort to frame the forecasting problem so as to facilitate utilizing all the distributional information that is available". Using distributional information from previous ventures similar to the one being forecast is called taking an "outside view". Reference class forecasting is a method for taking an outside view on planned actions.
Reference class forecasting for a specific project involves the following three steps:
  1. Identify a reference class of past, similar projects.
  2. Establish a probability distribution for the selected reference class for the parameter that is being forecast.
  3. Compare the specific project with the reference class distribution, in order to establish the most likely outcome for the specific project.
Whereas Kahneman and Tversky developed the theories of reference class forecasting, Flyvbjerg and COWI (2004) developed the method for its practical use in policy and planning. The first instance of reference class forecasting in practice is described in Flyvbjerg (2006). This was a forecast carried out in 2004 by the UK government of the projected capital costs for an extension of Edinburgh Trams. The promoter's forecast estimated a cost of £255 million. Taking all available distributional information into account, based on a reference class of comparable rail projects, the reference class forecast estimated a cost of £320 million. A report issued in August 2011 estimated that the final cost of the yet unfinished project would be over £1 billion, for a shorter tram line than the proposed Line 2.
Since the Edinburgh forecast, reference class forecasting has been applied to numerous other projects in the UK, including the £15 (US$29) billion Crossrail project in London. After 2004, The Netherlands, Denmark, and Switzerland have also implemented various types of reference class forecasting.
Before this, in 2001 (updated in 2006), AACE International (the Association for the Advancement of Cost Engineering) included Estimate Validation as a distinct step in the recommended practice of Cost Estimating (Estimate Validation is equivalent to Reference class forecasting in that it calls for separate empirical-based evaluations to benchmark the base estimate):
The estimate should be benchmarked or validated against or compared to historical experience and/or past estimates of the enterprise and of competitive enterprises to check its appropriateness, competitiveness, and to identify improvement opportunities...Validation examines the estimate from a different perspective and using different metrics than are used in estimate preparation.
In the process industries (e.g., oil and gas, chemicals, mining, energy, etc. which tend to dominate AACE's membership), benchmarking (i.e., "outside view") of project cost estimates against the historical costs of completed projects of similar types, including probabilistic information, has a long history.
SUBSCRIBERS - ( LINKS) :FOLLOW / REF / 2 /

findleverage.blogspot.com
  Krkz77@yahoo.com
  +234-81-83195664
For affiliation:

Redox / REF / 749 / 2014



Redox (portmanteau of reduction and oxidation) reactions include all chemical reactions in which atoms have their oxidation state changed; in general, redox reactions involve the transfer of electrons between species.
This can be either a simple redox process, such as the oxidation of carbon to yield carbon dioxide (CO
2) or the reduction of carbon by hydrogen to yield methane (CH4), or a complex process such as the oxidation of glucose (C6H12O6) in the human body through a series of complex electron transfer processes.
The term "redox" comes from two concepts involved with electron transfer: reduction and oxidation.It can be explained in simple terms:
  • Oxidation is the loss of electrons or an increase in oxidation state by a molecule, atom, or ion.
  • Reduction is the gain of electrons or a decrease in oxidation state by a molecule, atom, or ion.
Although oxidation reactions are commonly associated with the formation of oxides from oxygen molecules, these are only specific examples of a more general concept of reactions involving electron transfer.
Redox reactions, or oxidation-reduction reactions, have a number of similarities to acid–base reactions. Like acid–base reactions, redox reactions are a matched set, that is, there cannot be an oxidation reaction without a reduction reaction happening simultaneously. The oxidation alone and the reduction alone are each called a half-reaction, because two half-reactions always occur together to form a whole reaction. When writing half-reactions, the gained or lost electrons are typically included explicitly in order that the half-reaction be balanced with respect to electric charge.
Though sufficient for many purposes, these descriptions are not precisely correct. Oxidation and reduction properly refer to a change in oxidation state — the actual transfer of electrons may never occur. Thus, oxidation is better defined as an increase in oxidation state, and reduction as a decrease in oxidation state. In practice, the transfer of electrons will always cause a change in oxidation state, but there are many reactions that are classed as "redox" even though no electron transfer occurs (such as those involving covalent bonds).
Etymology
"Redox" is a portmanteau of "reduction" and "oxidation".
The word oxidation originally implied reaction with oxygen to form an oxide, since dioxygen (O2 (g)) was historically the first recognized oxidizing agent. Later, the term was expanded to encompass oxygen-like substances that accomplished parallel chemical reactions. Ultimately, the meaning was generalized to include all processes involving loss of electrons.
The word reduction originally referred to the loss in weight upon heating a metallic ore such as a metal oxide to extract the metal. In other words, ore was "reduced" to metal. Antoine Lavoisier (1743-1794) showed that this loss of weight was due to the loss of oxygen as a gas. Later, scientists realized that the metal atom gains electrons in this process. The meaning of reduction then became generalized to include all processes involving gain of electrons. Even though "reduction" seems counter-intuitive when speaking of the gain of electrons, it might help to think of reduction as the loss of oxygen, which was its historical meaning.
The electrochemist John Bockris has used the words electronation and deelectronation to describe reduction and oxidation processes respectively when they occur at electrodes. These words are analogous to protonation and deprotonation, but they have not been widely adopted by chemists.
The term "hydrogenation" could be used instead of reduction, since hydrogen is the reducing agent in a large number of reactions, especially in organic chemistry and biochemistry. But, unlike oxidation, which has been generalized beyond its root element, hydrogenation has maintained its specific connection to reactions that add hydrogen to another substance (e.g., the hydrogenation of unsaturated fats in saturated fats, R-CH=CH-R + H2 → R-CH2-CH2-R).
Oxidizing and reducing agents
In redox processes, the reductant transfers electrons to the oxidant. Thus, in the reaction, the reductant or reducing agent loses electrons and is oxidized, and the oxidant or oxidizing agent gains electrons and is reduced. The pair of an oxidizing and reducing agent that are involved in a particular reaction is called a redox pair. A redox couple is a reducing species and its corresponding oxidized form, e.g., Fe2+/Fe3+.
Oxidizers
Substances that have the ability to oxidize other substances (cause them to lose electrons) are said to be oxidative or oxidizing and are known as oxidizing agents, oxidants, or oxidizers. That is, the oxidant (oxidizing agent) removes electrons from another substance, and is thus itself reduced. And, because it "accepts" electrons, the oxidizing agent is also called an electron acceptor, hence the name. Oxygen is the quintessential oxidizer.
Oxidants are usually chemical substances with elements in high oxidation states (e.g., H
2O
2
, MnO−
4
, CrO
3
, Cr
2O2−
7
, OsO
4
), or else highly electronegative elements (O2, F2, Cl2, Br2) that can gain extra electrons by oxidizing another substance.
Reducers
Substances that have the ability to reduce other substances (cause them to gain electrons) are said to be reductive or reducing and are known as reducing agents, reductants, or reducers. The reductant (reducing agent) transfers electrons to another substance, and is thus itself oxidized. And, because it "donates" electrons, the reducing agent is also called an electron donor. Electron donors can also form charge transfer complexes with electron acceptors.
Reductants in chemistry are very diverse. Electropositive elemental metals, such as lithium, sodium, magnesium, iron, zinc, and aluminium, are good reducing agents. These metals donate or give away electrons readily. Hydride transfer reagents, such as NaBH4 and LiAlH4, are widely used in organic chemistry,[3][4] primarily in the reduction of carbonyl compounds to alcohols. Another method of reduction involves the use of hydrogen gas (H2) with a palladium, platinum, or nickel catalyst. These catalytic reductions are used primarily in the reduction of carbon-carbon double or triple bonds.
Standard electrode potentials (reduction potentials)
Each half-reaction has a standard electrode potential (E0cell), which is equal to the potential difference (or voltage) (E0cell) at equilibrium under standard conditions of an electrochemical cell in which the cathode reaction is the half-reaction considered, and the anode is a standard hydrogen electrode where hydrogen is oxidized: ½ H2 → H+ + e-.
The electrode potential of each half-reaction is also known as its reduction potential E0red, or potential when the half-reaction takes place at a cathode. The reduction potential is a measure of the tendency of the oxidizing agent to be reduced. Its value is zero for H+ + e → ½ H2 by definition, positive for oxidizing agents stronger than H+ (e.g., +2.866 V for F2) and negative for oxidizing agents that are weaker than H+ (e.g., –0.763 V for Zn2+).
For a redox reaction that takes place in a cell, the potential difference E0cell = E0cathode – E0anode
However, the potential of the reaction at the anode was sometimes expressed as an oxidation potential, E0ox = – E0. The oxidation potential is a measure of the tendency of the reducing agent to be oxidized, but does not represent the physical potential at an electrode. With this notation, the cell voltage equation is written with a plus sign E0cell = E0cathode + E0ox (anode)
Examples of redox reactions

Illustration of a redox reaction
A good example is the reaction between hydrogen and fluorine in which hydrogen is being oxidized and fluorine is being reduced:
H
2 + F
2 → 2 HF
We can write this overall reaction as two half-reactions:
the oxidation reaction:
H
2 → 2 H+ + 2 e
and the reduction reaction:
F
2 + 2 e → 2 F
Analyzing each half-reaction in isolation can often make the overall chemical process clearer. Because there is no net change in charge during a redox reaction, the number of electrons in excess in the oxidation reaction must equal the number consumed by the reduction reaction (as shown above).
Elements, even in molecular form, always have an oxidation state of zero. In the first half-reaction, hydrogen is oxidized from an oxidation state of zero to an oxidation state of +1. In the second half-reaction, fluorine is reduced from an oxidation state of zero to an oxidation state of −1.
When adding the reactions together the electrons are canceled:
H
2
2 H+ + 2 e
F
2 + 2 e
2 F

H
2 + F
2
2 H+ + 2 F
And the ions combine to form hydrogen fluoride:
2 H+ + 2 F → 2 HF
The overall reaction is:
H
2 + F
2 → 2 HF
Metal displacement

A redox reaction is the force behind an electrochemical cell like the Galvanic cell pictured. The battery is made out of a zinc electrode in a ZnSO4 solution connected with a wire and a porous disk to a copper electrode in a CuSO4 solution.
In this type of reaction, a metal atom in a compound (or in a solution) is replaced by an atom of another metal. For example, copper is deposited when zinc metal is placed in a copper(II) sulfate solution:
Zn(s)+ CuSO4(aq) → ZnSO4(aq) + Cu(s)
In the above reaction, zinc metal displaces the copper(II) ion from copper sulfate solution and thus liberates free copper metal.
The ionic equation for this reaction is:
Zn + Cu2+ → Zn2+ + Cu
As two half-reactions, it is seen that the zinc is oxidized:
Zn → Zn2+ + 2 e−
And the copper is reduced:
Cu2+ + 2 e− → Cu
Other examples
2 NO3 + 10 e + 12 H+ → N2 + 6 H2O
Corrosion and rusting

Oxides, such as iron(III) oxide or rust, which consists of hydrated iron(III) oxides Fe2O3·nH2O and iron(III) oxide-hydroxide (FeO(OH), Fe(OH)3), form when oxygen combines with other elements
  • The term corrosion refers to the electrochemical oxidation of metals in reaction with an oxidant such as oxygen. Rusting, the formation of iron oxides, is a well-known example of electrochemical corrosion; it forms as a result of the oxidation of iron metal. Common rust often refers to iron(III) oxide, formed in the following chemical reaction:
4Fe + 3O2 → 2Fe2O3
  • The oxidation of iron(II) to iron(III) by hydrogen peroxide in the presence of an acid:
Fe2+ → Fe3+ + e
H2O2 + 2 e → 2 OH
Overall equation:
2 Fe2+ + H2O2 + 2 H+ → 2 Fe3+ + 2 H2O
Redox reactions in industry
Cathodic protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects protected metal to a more easily corroded "sacrificial anode" to act as the anode. The sacrificial metal instead of the protected metal, then, corrodes. A common application of cathodic protection is in galvanized steel, in which a sacrificial coating of zinc on steel parts protects them from rust.
The primary process of reducing ore at high temperature to produce metals is known as smelting.
Oxidation is used in a wide variety of industries such as in the production of cleaning products and oxidizing ammonia to produce nitric acid, which is used in most fertilizers.
Redox reactions are the foundation of electrochemical cells.
The process of electroplating uses redox reactions to coat objects with a thin layer of a material, as in chrome-plated automotive parts, silver plating cutlery, and gold-plated jewelry.
The production of compact discs depends on a redox reaction, which coats the disc with a thin layer of metal film.
Redox reactions in biology


Many important biological processes involve redox reactions.
Cellular respiration, for instance, is the oxidation of glucose (C6H12O6) to CO2 and the reduction of oxygen to water. The summary equation for cell respiration is:
C6H12O6 + 6 O2 → 6 CO2 + 6 H2O
The process of cell respiration also depends heavily on the reduction of NAD+ to NADH and the reverse reaction (the oxidation of NADH to NAD+). Photosynthesis and cellular respiration are complementary, but photosynthesis is not the reverse of the redox reaction in cell respiration:
6 CO2 + 6 H2O + light energy → C6H12O6 + 6 O2
Biological energy is frequently stored and released by means of redox reactions. Photosynthesis involves the reduction of carbon dioxide into sugars and the oxidation of water into molecular oxygen. The reverse reaction, respiration, oxidizes sugars to produce carbon dioxide and water. As intermediate steps, the reduced carbon compounds are used to reduce nicotinamide adenine dinucleotide (NAD+), which then contributes to the creation of a proton gradient, which drives the synthesis of adenosine triphosphate (ATP) and is maintained by the reduction of oxygen. In animal cells, mitochondria perform similar functions. See the Membrane potential article.
Free radical reactions are redox reactions that occur as a part of homeostasis and killing microorganisms, where an electron detaches from a molecule and then reattaches almost instantaneously. Free radicals are a part of redox molecules and can become harmful to the human body if they do not reattach to the redox molecule or an antioxidant. Unsatisfied free radicals can spur the mutation of cells they encounter and are, thus, causes of cancer.
The term redox state is often used to describe the balance of GSH/GSSG, NAD+/NADH and NADP+/NADPH in a biological system such as a cell or organ. The redox state is reflected in the balance of several sets of metabolites (e.g., lactate and pyruvate, beta-hydroxybutyrate, and acetoacetate), whose interconversion is dependent on these ratios. An abnormal redox state can develop in a variety of deleterious situations, such as hypoxia, shock, and sepsis. Redox mechanism also control some cellular processes. Redox proteins and their genes must be co-located for redox regulation according to the CoRR hypothesis for the function of DNA in mitochondria and chloroplasts.
Redox cycling
A wide variety of aromatic compounds are enzymatically reduced to form free radicals that contain one more electron than their parent compounds. In general, the electron donor is any of a wide variety of flavoenzymes and their coenzymes. Once formed, these anion free radicals reduce molecular oxygen to superoxide, and regenerate the unchanged parent compound. The net reaction is the oxidation of the flavoenzyme's coenzymes and the reduction of molecular oxygen to form superoxide. This catalytic behavior has been described as futile cycle or redox cycling.
Examples of redox cycling-inducing molecules are the herbicide paraquat and other viologens and quinones such as menadione.
Redox reactions in geology

Mi Vida uranium mine, near Moab, Utah. The alternating red and white/green bands of sandstone correspond to oxidized and reduced conditions in groundwater redox chemistry.
In geology, redox is important to both the formation of minerals and the mobilization of minerals, and is also important in some depositional environments. In general, the redox state of most rocks can be seen in the color of the rock. The rock forms in oxidizing conditions, giving it a red color. It is then "bleached" to a green—or sometimes white—form when a reducing fluid passes through the rock. The reduced fluid can also carry uranium-bearing minerals. Famous examples of redox conditions affecting geological processes include uranium deposits and Moqui marbles.
Balancing redox reactions
Describing the overall electrochemical reaction for a redox process requires a balancing of the component half-reactions for oxidation and reduction. In general, for reactions in aqueous solution, this involves adding H+, OH, H2O, and electrons to compensate for the oxidation changes.
Acidic media
In acidic media, H+
ions and water are added to half-reactions to balance the overall reaction.
For instance, when manganese(II) reacts with sodium bismuthate:
Unbalanced reaction:
Mn2+
(aq) + NaBiO
3(s) → Bi3+
(aq) + MnO
4 (aq)
Oxidation:
4 H
2O(l) + Mn2+
(aq) → MnO−
4(aq) + 8 H+
(aq) + 5 e−
Reduction:
2 e− + 6 H+
+ BiO−
3(s) → Bi3+
(aq) + 3 H
2O(l)
The reaction is balanced by scaling the two half-cell reactions to involve the same number of electrons (multiplying the oxidation reaction by the number of electrons in the reduction step and vice versa):
8 H
2O(l) + 2 Mn2+
(aq) → 2 MnO−
4(aq) + 16 H+
(aq) + 10 e−
10 e− + 30 H+
+ 5 BiO−
3(s) → 5 Bi3+
(aq) + 15 H
2O(l)
Adding these two reactions eliminates the electrons terms and yields the balanced reaction:
14 H+
(aq) + 2 Mn2+
(aq) + 5 NaBiO
3(s) → 7 H
2O(l) + 2 MnO−
4(aq) + 5 Bi3+
(aq) + 5 Na+
(aq)
Basic media
In basic media, OH ions and water are added to half reactions to balance the overall reaction.
For example, in the reaction between potassium permanganate and sodium sulfite:
Unbalanced reaction:
KMnO
4 + Na
2SO
3 + H
2O → MnO
2 + Na
2SO
4 + KOH
Reduction:
3 e− + 2 H
2O + MnO
4 → MnO
2 + 4 OH
Oxidation:
2 OH + SO
32− → SO
42− + H
2O + 2 e−
Balancing the number of electrons in the two half-cell reactions gives:
6 e− + 4 H
2O + 2 MnO
4 → 2 MnO
2 + 8 OH
6 OH + 3 SO
32− → 3 SO
42− + 3 H
2O + 6 e−
Adding these two half-cell reactions together gives the balanced equation:
2 KMnO
4 + 3 Na
2SO
3 + H
2O → 2 MnO
2 + 3 Na
2SO
4 + 2 KOH
Memory aids
The key terms involved in redox are often confusing to students. For example, an element that is oxidized loses electrons; however, that element is referred to as the reducing agent. Likewise, an element that is reduced gains electrons and is referred to as the oxidizing agent. Acronyms or mnemonics are commonly used  to help remember what is happening:
  • "OIL RIG"—Oxidation Is Loss of electrons, Reduction Is Gain of electrons.
  • "LEO the lion says GER" — Loss of Electrons is Oxidation, Gain of Electrons is Reduction.
  • "LEORA says GEROA" — Loss of Electrons is Oxidation (Reducing Agent), Gain of Electrons is Reduction (Oxidizing Agent).
  • "RED CAT" and "AN OX", or "AnOx RedCat" ("an ox-red cat"), — Reduction occurs at the Cathode and the Anode is for Oxidation.
  • "RED CAT gains what AN OX loses" - Reduction occurs at the Cathode gains (electrons) what Anode Oxidation loses (electrons).

SUBSCRIBERS - ( LINKS) :FOLLOW / REF / 2 /

findleverage.blogspot.com
  Krkz77@yahoo.com
  +234-81-83195664
For affiliation:

Radiative forcing / REF / 748 / 2014



In climate science, radiative forcing or climate forcing, is defined as the difference of insolation (sunlight) absorbed by the Earth and energy radiated back to space. Typically, radiative forcing is quantified at the tropopause in units of watts per square meter of the Earth's surface. A positive forcing (more incoming energy) warms the system, while negative forcing (more outgoing energy) cools it. Causes of radiative forcing include changes in insolation and the concentrations of radiatively active gases, commonly known as greenhouse gases and aerosols.
Radiation balance
Atmospheric gases only absorb some wavelengths of energy but are transparent to others. The absorption patterns of water vapor (blue peaks) and carbon dioxide (pink peaks) overlap in some wavelengths. Carbon dioxide is not as strong a greenhouse gas as water vapor, but it absorbs energy in wavelengths (12-15 micrometers) that water vapor does not, partially closing the “window” through which heat radiated by the surface would normally escape to space. (Illustration NASA, Robert Rohde)
Almost all of the energy which affects Earth's weather is received as radiant energy from the Sun. The planet and its atmosphere absorb and reflect some of the energy, while long-wave energy is radiated back into space. The balance between absorbed and radiated energy determines the average temperature. Because the atmosphere absorbs some of the re-radiated long-wave energy, the planet is warmer than it would be in the absence of the atmosphere: see greenhouse effect.
The radiation balance is altered by such factors as the intensity of solar energy, reflectivity of clouds or gases, absorption by various greenhouse gases or surfaces, emission of heat by various materials. Any such alteration is a radiative forcing, and causes a new balance to be reached. This happens continuously as sunlight hits the surface, clouds and aerosols form, the concentrations of atmospheric gases vary, and seasons alter the ground cover.
IPCC usage
"Radiative forcing is a measure of the influence a factor has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system and is an index of the importance of the factor as a potential climate change mechanism. In this report radiative forcing values are for changes relative to preindustrial conditions defined at 1750 and are expressed in Watts per square meter (W/m2)."
In simple terms, radiative forcing is "...the rate of energy change per unit area of the globe as measured at the top of the atmosphere." In the context of climate change, the term "forcing" is restricted to changes in the radiation balance of the surface-troposphere system imposed by external factors, with no changes in stratospheric dynamics, no surface and tropospheric feedbacks in operation (i.e., no secondary effects induced because of changes in tropospheric motions or its thermodynamic state), and no dynamically induced changes in the amount and distribution of atmospheric water (vapour, liquid, and solid forms).
Climate sensitivity
Radiative forcing can be used to estimate a subsequent change in equilibrium surface temperature (ΔTs) arising from that radiative forcing via the equation:

where λ is the climate sensitivity, usually with units in K/(W/m2), and ΔF is the radiative forcing. A typical value of λ is 0.8 K/(W/m2), which gives a warming of 3K for doubling of CO2.
Example calculations
Solar forcing
Radiative forcing (measured in Watts per square meter) can be estimated in different ways for different components. For the case of a change in solar irradiance (i.e., "solar forcing"), the radiative forcing is simply the change in the average amount of solar energy absorbed per square meter of the Earth's area. Since the cross-sectional area of the Earth exposed to the Sun (πr2) is equal to 1/4 of the surface area of the Earth (4πr2), the solar input per unit area is one quarter the change in solar intensity. This must be multiplied by the fraction of incident sunlight that is absorbed, F=(1-R), where R is the reflectivity, or albedo, of the Earth. The albedo of the Earth is approximately 0.3, so F is approximately equal to 0.7. Thus, the solar forcing is the change in the solar intensity divided by 4 and multiplied by 0.7.
Likewise, a change in albedo will produce a solar forcing equal to the change in albedo divided by 4 multiplied by the solar constant.
Forcing due to atmospheric gas
For a greenhouse gas, such as carbon dioxide, radiative transfer codes that examine each spectral line for atmospheric conditions can be used to calculate the change ΔF as a function of changing concentration. These calculations can often be simplified into an algebraic formulation that is specific to that gas.
where C is the CO2 concentration in parts per million by volume and C0 is the reference concentration. The relationship between carbon dioxide and radiative forcing is logarithmic, and thus increased concentrations have a progressively smaller warming effect.
A different formula applies for some other greenhouse gases such as methane and N2O (square-root dependence) or CFCs (linear), with coefficients that can be found e.g. in the IPCC reports.
Related measures
Radiative forcing is intended as a useful way to compare different causes of perturbations in a climate system. Other possible tools can be constructed for the same purpose: for example Shine et al. say "...recent experiments indicate that for changes in absorbing aerosols and ozone, the predictive ability of radiative forcing is much worse... we propose an alternative, the 'adjusted troposphere and stratosphere forcing'. We present GCM calculations showing that it is a significantly more reliable predictor of this GCM's surface temperature change than radiative forcing. It is a candidate to supplement radiative forcing as a metric for comparing different mechanisms...". In this quote, GCM stands for "global circulation model", and the word "predictive" does not refer to the ability of GCMs to forecast climate change. Instead, it refers to the ability of the alternative tool proposed by the authors to help explain the system response.
Changes in radiative forcing
The table below (derived from atmospheric radiative transfer models) shows changes in radiative forcing between 1979 and 2013. The table includes the contribution to radiative forcing from carbon dioxide (CO
2), methane (CH
4), nitrous oxide (N
2O); chlorofluorocarbons (CFCs) ; and fifteen other minor, long-lived, halogenated gases. The table includes the contribution to radiative forcing of long-lived greenhouse gases. It does not include other forcings, such as aerosols and changes in solar activity.

Radiative forcing, relative to 1750, due to carbon dioxide alone since 1979. The percent change from January 1, 1990 is shown on the right axis.
The table shows that CO
2 dominates the total forcing, with methane and the CFCs becoming relatively smaller contributors to the total forcing over time. The five major greenhouse gases account for about 96% of the direct radiative forcing by long-lived greenhouse gas increases since 1750. The remaining 4% is contributed by the 15 minor halogenated gases.
The table also includes an "Annual Greenhouse Gas Index" (AGGI), which is defined as the ratio of the total direct radiative forcing due to long-lived greenhouse gases for any year for which adequate global measurements exist to that which was present in 1990. 1990 was chosen because it is the baseline year for the Kyoto Protocol. This index is a measure of the inter-annual changes in conditions that affect carbon dioxide emission and uptake, methane and nitrous oxide sources and sinks, the decline in the atmospheric abundance of ozone-depleting chemicals related to the Montreal Protocol. and the increase in their substitutes (HCFCs and HFCs). Most of this increase is related to CO
2. For 2013, the AGGI was 1.34 (representing an increase in total direct radiative forcing of 34% since 1990). The increase in CO
2 forcing alone since 1990 was about 46%. The decline in the CFCs has tempered the increase in net radiative forcing considerably.
SUBSCRIBERS - ( LINKS) :FOLLOW / REF / 2 /

findleverage.blogspot.com
  Krkz77@yahoo.com
  +234-81-83195664
For affiliation: